

UNIVERSITY OF CAMBRIDGE INTERNATIONAL EXAMINATIONS International General Certificate of Secondary Education

CANDIDATE NAME							
CENTRE NUMBER				CANDIDA NUMBER	TE		

* 4 3 6 2 9 5 2 0

CO-ORDINATED SCIENCES

0654/32

Paper 3 (Extended)

October/November 2011

2 hours

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your Centre number, candidate number and name on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

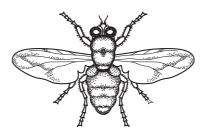
DO **NOT** WRITE IN ANY BARCODES.

Answer all questions.

A copy of the Periodic Table is printed on page 24.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.


For Exam	iner's Use
1	
2	
3	
4	
5	
6	
7	
8	
9	
Total	

This document consists of 22 printed pages and 2 blank pages.

Houseflies are common insect pests. Fig. 1.1 shows a housefly. 1

For Examiner's Use

		Fig. 1.1
(a)	On	Fig. 1.1, label and name two features that are characteristic of insects. [2]
(b)	inso	useflies feed by spitting saliva onto food, such as meat. Enzymes in the saliva turn bluble substances into soluble ones. The flies can then suck up the liquid into their estive system.
	(i)	Suggest one enzyme in a housefly's saliva that could digest a substance in meat.
		[1]
	(ii)	State the soluble product or products that this enzyme would produce.
		[1]
(c)		useflies spread diseases such as typhoid fever. They leave harmful microorganisms food that will later be eaten by a person.
		scribe two ways in which white blood cells can destroy microorganisms that have ered a person's body.
	1.	
	2.	
		[2]
(d)	Wh	en a housefly flies, its wings produce a buzzing sound.
	(i)	Suggest how a movement such as that of a fly's wings produces sound.
		[2]

(ii)	A housefly beats its wings about 200 times per second. A midge (a small insect) beats its wings about 1000 times per second.	For Examiner's Use
	State and explain how the sound produced by a flying midge will differ from the sound produced by a flying housefly.	
	[2]	

2 Nordic gold is an alloy of four metals used to make coins.

Table 2.1 shows information about the metals contained in Nordic gold.

(a) Nordic gold has properties which make it suitable for making coins.

Table 2.1

metal	% by mass in Nordic gold	compound from which the metal is extracted
aluminium	5	Al ₂ O ₃
copper	89	CuFeS ₂
tin	1	SnO ₂
zinc	5	ZnS

Suggest one property Nordic gold is likely to have, other than its appearance, that makes it suitable for making coins.
Explain briefly why this property is important.
property
importance

(b) The method used to extract a metal from its compounds depends on the reactivity of the metal.

(i) Tin may be extracted from tin oxide, SnO₂, by heating a mixture of tin oxide and carbon. The other product of this reaction is carbon monoxide, CO.

Construct a balanced, symbolic equation for this reaction.

Explain why it is possible to extract tin but not aluminium by heating their oxides with carbon. [2] (iii) Aluminium is extracted from the insoluble compound aluminium oxide by electrolysis. Outline the stages by which aluminium oxide, containing aluminium ions, is converted into metallic aluminium, containing aluminium atoms, using electrolysis. [3] (c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin. Show your working.
(iii) Aluminium is extracted from the insoluble compound aluminium oxide by electrolysis. Outline the stages by which aluminium oxide, containing aluminium ions, is converted into metallic aluminium, containing aluminium atoms, using electrolysis. (c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(iii) Aluminium is extracted from the insoluble compound aluminium oxide by electrolysis. Outline the stages by which aluminium oxide, containing aluminium ions, is converted into metallic aluminium, containing aluminium atoms, using electrolysis. (c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(iii) Aluminium is extracted from the insoluble compound aluminium oxide by electrolysis. Outline the stages by which aluminium oxide, containing aluminium ions, is converted into metallic aluminium, containing aluminium atoms, using electrolysis. [3] (c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
electrolysis. Outline the stages by which aluminium oxide, containing aluminium ions, is converted into metallic aluminium, containing aluminium atoms, using electrolysis. [3] (c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
converted into metallic aluminium, containing aluminium atoms, using electrolysis. [3] (c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
(c) A coin made of Nordic gold has a mass of 7.80 g. Calculate the number of moles of copper in the coin.
Calculate the number of moles of copper in the coin.
Show your working.
[2]

3 Yaks are animals that live in the cold mountainous region of the Himalayas.

For Examiner's Use

[3]

Fig. 3.1 shows a yak.

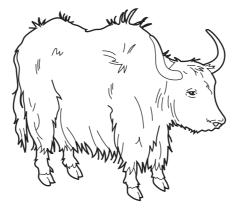


Fig. 3.1

		9. 0
(a)	Exp	plain how the long hair of the yak keeps it warm during the cold weather.
		[2]
(b)		as are used as 'beasts of burden'. They can be ridden or used to carry or pull heavy ects.
	Ау	ak of mass 1000 kg is carrying a load of 80 kg.
	(i)	The yak carries its load up a mountain slope and finishes 100 m higher up the mountain.
		Calculate the work done gaining this height.
		The Earth's gravitational field strength is 10 N/kg.
		State the formula that you use and show your working.
		formula used
		working

	(ii)	While the yak is carrying the load, it travels at a speed of 0.2 m/s.	
		Calculate the kinetic energy of the yak and its load at this time.	
		State the formula that you use and show your working.	
		formula used	
		working	
			[2]
(c)	Ау	ak has a mass of 1000 kg. It has four feet, each of area 300 cm ² .	
	Cal	culate the average pressure that the yak exerts on the ground.	
	Sta	te the formula that you use and show your working.	
		formula used	
		working	
			[3]

BLANK PAGE

(b) Table 4.1 shows the displayed formulae and boiling points of four hydrocarbons, A, B, C and D.

For Examiner's Use

Table 4.1

	displayed formula	boiling point/°C
Α	H H H H H H H C C C C H H H H H H H	69
В	H H H H 	-0.5
С	H H H H 	-6.3
D	H H H H H H 	63

(i)	Name the two homologous series to which the hydrocarbons in Table 4.1 belong.
	and[1]
(ii)	Use the information in Table 4.1 to suggest one way in which the boiling point of a hydrocarbon is affected by its molecular structure.
	[2]

(iii)	A bottle contains a colourless liquid which is thought to be either hydrocarbon A or D .
	Describe a chemical test, and its result, which could be used to identify which hydrocarbon is in the bottle.
	Explain your choice of test.
	[3]

5 Fig. 5.1 shows two plants that are grown as crops.

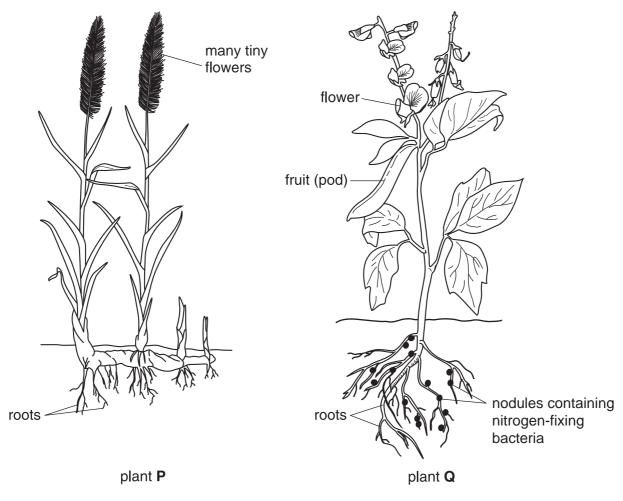


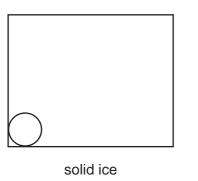
Fig. 5.1

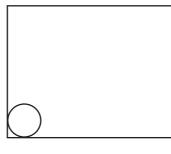
)	fruit.	
	[4]	

(b)	Far	mers often add fertilisers containing nitrates to the soil where they grow crops.
	(i)	Explain why this is done.
		[2]
	(ii)	Explain why fields in which plant ${\bf Q}$ is growing would require less nitrate fertiliser than fields in which plant ${\bf P}$ is growing.
		[2]
	(iii)	Explain why using large amounts of nitrate fertiliser near a river could cause harm to the environment.
		[3]

6 Fig. 6.1 shows the inside of a refrigerator. The temperature inside the freezing compartment is -20 °C and the temperature in the rest of the refrigerator is +5 °C.

For Examiner's Use


Fig. 6.1

(a)	(i)	Draw arrows on Fig. 6.1 to show what happens to the air cooled by the freezing compartment. [1]
	(ii)	Explain, with reference to air particles, why this happens.

(b) Ice is formed in the freezer when water freezes.

Draw diagrams to show the arrangement of water molecules in solid ice and in liquid water. One molecule has been drawn for you in each box.

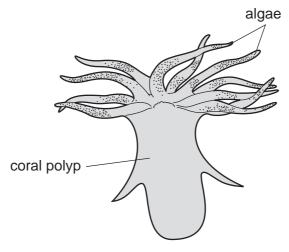
liquid water

[2]

(c)		teel spoon of mass 0.05 kg is moved from the freezing co fridge. The specific heating capacity of steel is 450 J/kg°		For Examiner's Use
	Cal	culate how much heat energy is needed to warm the spoo	on from -20°C to +5°C.	
	Sta	te the formula that you use and show your working.		
		formula used		
		working		
			[3]	
(d)		e refrigerator has two identical lamps. The supply voltage sing through each lamp when lit is 0.05 A.	e is 250 V and the current	
	(i)	Show that the resistance of one lamp when lit is $5000\Omega.$		
		State the formula that you use and show your working.		
		formula used		
		working		
			[1]	
	(ii)	The lamps are connected together in parallel.		
		Calculate the combined resistance of the two lamps.		
		State the formula that you use and show your working.		
		formula used		
		working		
			[3]	

16 Coral reefs are made of living individuals (coral polyps) on top of the skeletons of dead corals. When a coral polyp dies, its skeleton remains and a new polyp takes its place. (a) The coral polyp takes in calcium ions and carbonate ions from the surrounding seawater to produce calcium carbonate, CaCO₃, which it uses to build its skeleton. (i) Some of the calcium ions present in seawater were once part of limestone rocks on the Earth's surface. Describe one sequence of natural, physical processes which is involved in moving calcium ions from limestone to the sea. (ii) Some of the carbonate ions present in seawater are formed when carbon dioxide from the air dissolves and reacts. State **two** processes that add carbon dioxide to the atmosphere. 2 _____[2] (iii) Some ships have been seriously damaged when they have collided with coral reefs. Use your knowledge of the structure and properties of ionic compounds such as calcium carbonate to explain why ships are seriously damaged if they hit a coral

For Examiner's


© UCLES 2011 0654/32/O/N/11

reef.

(b) Coral polyps and certain algae (microscopic plants) live closely together and these organisms help each other to survive.

For Examiner's Use

The algae in the coral polyps produce oxygen in the presence of sunlight. The coral polyps produce carbon dioxide as a waste product.

(i)	Name the process,	occurring in the alga	ae, that produces o	xygen.	
					[1]
(ii)	Underline one of the process in (i) .	ne formulae below w	hich represents a c	ompound also f	ormed by
	C_2H_6	$C_2H_5O_2N$	$C_6H_{12}O_6$	CO	
	Name the compoun	nd you have underlir	ned.		[2]
(iii)	Explain briefly why together.	it is beneficial for th	ne coral polyps and	the algae to liv	e closely
					1/1

(c)		ecent years, the amount of carbon dioxide in the atmosphere has increased. This contributed to a decrease in the average pH of seawater.
		ing this period, the growth rate of many coral reefs has significantly decreased, and ny others are no longer part of a successful ecosystem.
	(i)	Explain why increased levels of carbon dioxide in the atmosphere cause the average pH of seawater to decrease.
		[2]
	(ii)	Suggest a possible reason why a decrease in the average pH of seawater could damage coral reefs.
		[1]

BLANK PAGE

Please turn over for Question 8.

8

,u, 200050	ow a cen	ili a liulilali li	iuscie obtains	tne oxyger	that it needs for resp	oration.
***************************************			•••••	•••••		[2]
temperature potassium i	e. Body ons, soc	temperature dium ions and	e can be lo chloride ions	wered by dissolved in		contains
drinking no	fluids w ghout th	hile running.	She repeated	the run the	ran steadily for 120 r next day but this tim and humidity were th	ie drank
The results	are sho	wn in Fig. 8.1.				
	يך 40 ⊤∷				no fluids drur	ık
	39 -					
core body temperature	38 -	/,	,ø	9 - ∲∷'	Đ⊕ fluids drunk	
/°C	37 a	/ (
	Y.					
	36 0	30	60	90	120	
		rur	nning time/mi	nutes		
			Fig. 8.1			
(i) Explain	how sw	eating can re	duce body ten	nperature.		

© UCLES 2011 0654/32/O/N/11

For Examiner's Use

[2]

(ii)	Compare the body temperature of the athlete when she ran without drinking fluids to her body temperature when she ran while drinking fluids.	For Examiner's Use
	[2]	
(iii)	Suggest an explanation for the differences you have described in (ii).	
	[2]	
(iv)	During a long run, athletes prefer to drink fluids containing glucose, potassium ions, sodium ions and chloride ions rather than pure water.	
	Suggest how this can help them to perform better.	
	[2]	

9

(a)	An aircraft has a mass of 400 000 kg. It has four engines each capable of producing a maximum force of 300 000 N.
	Calculate the maximum acceleration of the aircraft.
	State the formula that you use and show your working.
	formula used
	working
	[3]
(b)	People who fly frequently have greater exposure to ionising radiation than those who do not fly.
	Explain why exposure to ionising radiation can be harmful.
	[2]
(c)	Potato snacks are packed in airtight packets and filled with nitrogen gas at atmospheric pressure.
	Snacks
	(i) Suggest why nitrogen gas is used, rather than air.
	[2]
	[Z]

A passenger has a packet of potato snacks in his hand luggage on the aircraft. During the flight, the aircraft cabin is at a pressure less than normal atmospheric pressure.
The passenger notices that the packet has expanded.
Explain, in terms of particles, why this happens.
[3]

DATA SHEET
The Periodic Table of the Elements

	0	4 He Helium	20 Neon 10 40	Argon	8 7	Krypton 36	131	×	Xenon 54		Ru	Radon 86			175 Lu Lutetium 71		בֿ	Lawrencium 103
	IIA		19 Fluorine	C1 Chlorine	∞ ∆	Bromine 35	127	–	lodine 53		¥	Astatine 85			173 Yb Ytterbium 70			Nobelium 102
	 		c	Sulfur 16	Se 3	Selenium 34	128	_e	1811unum 52			Polonium 84			169 Tm Thullum			Mendelevium 101
	>		u _e	Phosphorus			122	Sp	Antimony 51	209	<u></u>	Bismuth 83			167 Er Erbium 68			Fermium 100
	2		12 Carbon 6	Silicon	G 3	Germanium 32		Sn		207	Рр	Lead 82			165 Ho Holmium 67			Einsteinium 99
	≡			Aluminium 13	° a		115	u !	Indium 49	204	11	Thallium 81			162 Dy Dysprosium 66			Californium 98
		'			es Zn	Zinc 30	112	පු	Cadmium 48	201	£	Mercury 80			159 Tb Terbium 65			Berkelium 97
					°54	Copper 29	108	Ag		197	Au	Gold 79			157 Gd Gadolinium 64			Curium 96
Group					²⁰	Nickel 28	106	Pd	Palladium 46	195	₹	Platinum 78			152 Eu Europium 63		Am	Americium 95
Ď					ී දි	Cobalt 27	103	몺	knodium 45	192	Ļ	Iridium 77			Samarium 62		Pu	Plutonium 94
		1 Hydrogen			₅₆	Iron 26	101	Ru	Kutnenium 44	190	s _O	Osmium 76			Pm Promethium 61		Ν	Neptunium 93
					55 Mn	Manganese 25		ဥ	lecnnetium 43	186	Re	Rhenium 75			Nacodymium 60	238	D	Uranium 92
					బ్ స్	Chromium 24	96	ω	Molybdenum 42	184	>	Tungsten 74			Pr Praseodymium 59		Ра	Protactinium 91
					5 >	Vanadium 23	93	S N	Niobium 41	181	Та	Tantalum 73			140 Ce Cerium	232	드	Thorium 90
					84 	Titanium 22	91	Ż	Zirconium 40	178	Ξ	Hafnium 72				nic mass	lod	iic) number
					S c 45	Scandium 21	89	> ;	39 rtmum	139	La	Lanthanum 57 *	227 Actinium	1 68	d series series	a = relative atomic mass	X = atomic symbol	b = proton (atomic) number
	=		Beryllium 4	Mg Magnesium	9 %	Calcium 20	88	ັດ	Strontium 38	137	Ва	Barium 56	226 Ra Radium	88	*58-71 Lanthanoid series 190-103 Actinoid series	a D	×	Φ
	_		7 Lithium 3	Sodium Sodium	≋ ⊻	Potassium 19	85	S E	Kubidium 37	133	S	Caesium 55	Fr Francium	87	*58-71 L †90-103		Key	Q

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

University of Cambridge International Examinations is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge.