Cambridge Pre-U

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 9791/04

Paper 4 Practical

For examination from 2020

SPECIMEN PAPER

2 hours

You must answer on the question paper.

You will need: The materials and apparatus listed in the Confidential Instructions

Data booklet

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do not use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.
- Give details of the practical session and laboratory, where appropriate, in the boxes provided.

INFORMATION

- The total mark for this paper is 40.
- The number of marks for each question or part question is shown in brackets [].

This specimen paper has been updated for assessments from 2020. The specimen questions and mark schemes remain the same. The layout and wording of the front covers have been updated to reflect the new Cambridge International branding and to make instructions clearer for candidates.

Session
Laboratory

For Exam	iner's Use
1	
2	
Total	

This syllabus is regulated for use in England, Wales and Northern Ireland as a Cambridge International Level 3 Pre-U Certificate.

This document has 10 pages. Blank pages are indicated.

© UCLES 2018 [Turn over

BLANK PAGE

© UCLES 2018 9791/04/SP/20

1 A student suggests that the concentration of sulfuric acid can be determined by measuring the temperature of the solution as the acid is added in small amounts to a known volume of sodium hydroxide solution in a plastic cup.

$$2NaOH(aq) + H2SO4(aq) \rightarrow Na2SO4(aq) + 2H2O(I)$$

The student proposes the following hypothesis.

As the acid is added to the alkali the temperature rise will be directly proportional to the volume of acid added until the end-point of the reaction is reached. Upon further addition of acid there will be a reduction in the temperature of the solution in the cup as the acid added is not reacting and is at a lower temperature than the solution in the plastic cup.

The following reagents are provided.

FA 1 is 2.00 mol dm⁻³ sodium hydroxide, NaOH. **FA 2** is **approximately** 0.75 mol dm⁻³ sulfuric acid, H₂SO₄.

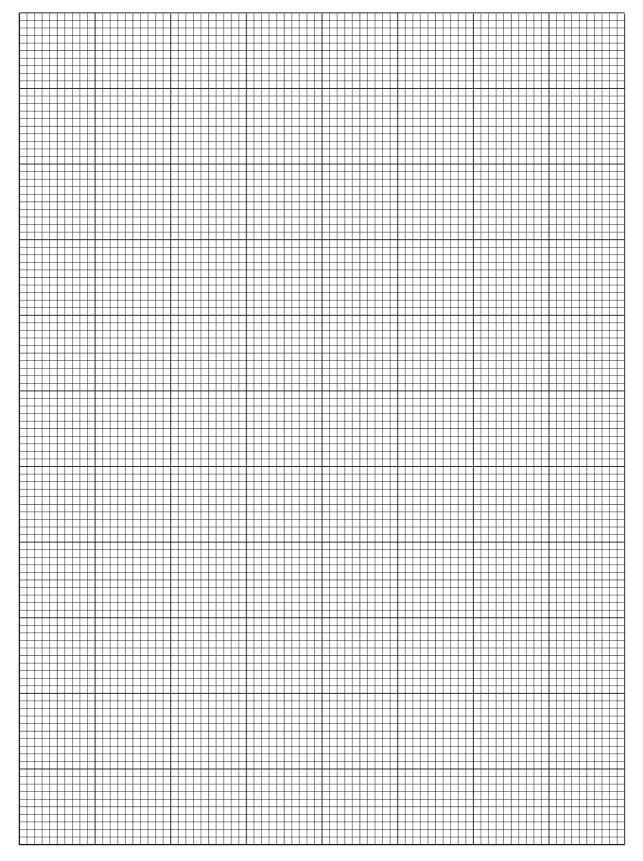
(a) Use the equation for the reaction to estimate the volume of **FA 2** that will neutralise 25.0 cm³ of **FA 1**.

(b) In the experiment you will add FA 2 from the burette to 25.0 cm³ of FA 1 in a plastic cup. You will measure the temperature of the solution after each addition of a certain volume of acid. You will then plot a graph of the temperature rise against the volume of acid added and use this to determine the end-point. You will then be able to calculate the concentration of H₂SO₄ in FA 2.

In order to obtain precise information about the end-point of the reaction, you will need to decide:

- the volume of acid to be added each time (do not use a volume which is less than 2.00 cm³)
- the total volume of acid to be added.

(c) Method


- 1. Fill the burette with **FA 2**.
- 2. Support the plastic cup in the 250 cm³ beaker.
- 3. Pipette 25.0 cm³ of **FA 1** into the plastic cup.
- 4. Measure and record the temperature of **FA 1** in the plastic cup.
- 5. Add the first volume of **FA 2** from the burette into the plastic cup. Stir the solution and record the highest temperature that is observed.
- 6. Continue to add each volume of **FA 2** and record the highest temperature observed.

Record in the space below:

- the initial temperature of FA 1
- the total volume of **FA 2** added at each stage in the experiment
- the temperature of the solution in the plastic cup after each addition of acid
- the temperature rise, ΔT , where ΔT = highest temperature of the solution after each addition of acid initial temperature of **FA 1**.

[6]

(d) On the grid below plot the temperature rise, ΔT , (y-axis) against the volume of **FA 2** added (x-axis).

(e)	(i)	Use your graph to obtain a value for the volume of FA 2 added at the end-point of the titration.
		volume of FA 2 at the end-point =cm ³ [1]
	(ii)	Use your answer to (i) to calculate the concentration of $\rm H_2SO_4$ in FA 2 . Show your working.
		concentration of FA 2 = mol dm ⁻³ [2]
(f)	-	plain how the results of your experiment support or do not support each part of the othesis proposed by the student.
		[2]
(g)		culate the percentage uncertainty in the total volume of FA 2 added from the burette for volume which is closest to the end-point.
		% [2]
(h)		tudent carrying out the same experiment noticed that each subsequent temperature rise ame less as the end-point was approached. Give two reasons why this was the case.
	reas	son 1
	reas	son 2
		[2]

© UCLES 2018 9791/04/SP/20

(i) Another student put forward the hypothesis that the heat energy produced in the reaction, rather than the temperature rise, is proportional to the volume of acid added.

Calculate the total heat produced by the addition of **FA 2** at the end-point. Assume that it takes $4.2 \, \mathrm{J}$ to raise the temperature of $1.0 \, \mathrm{cm}^3$ of solution by $1.0 \, ^\circ\mathrm{C}$.

hpat	produced =	J	Г	1	ı	ı
IICal	produced -	J	L	. 1	Ц	

[Total: 23]

	8
(a)	FA 3 is a solution containing three unknown cations . By choosing appropriate reagents you will be able to identify the cations that are present.
	Carry out tests to identify the three cations. Record your observations in the space below.
	Where gases are released they should be identified by a test, described in the appropriate place in your observations .
	If any solution is warmed a boiling tube MUST be used.
	Results
	The three cations in FA 3 are
(b)	Solution FA 3 contains either the sulfate or sulfite anion.
	(i) State reagents that will allow you to determine which anion is present. You must choose reagents that will not result in the formation of SO ₂ gas.

© UCLES 2018 9791/04/SP/20

(ii)	Use these reagents to test solution FA 3 . Record your tests and observations in the space below and hence determine which anion is present.
	The anion in FA 3 is[3]
(iii)	A student analysed a solid sample which was known to contain the sulfite ion. He made up a solution of the salt but then left it for a number of days in an open beaker before carrying out his tests. He found his results were incorrect in that they showed the presence of the sulfate ion. Explain why this was the case and outline how he should have analysed the sample.
	[1]

(c) (i) Carry out the following tests.

test	observations
To a 1cm depth of FA 3 in a boiling tube add a 1cm depth of hydrogen peroxide, then	
add to the mixture a 1 cm depth of sodium hydroxide. Stir the contents of the boiling tube carefully.	

(ii)	Suggest an explanation for your observations.
	[2

[3]

[Total: 17]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

Cambridge Assessment International Education is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which itself is a department of the University of Cambridge.