Basic Calculations

Question Paper 1

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Basic Calculations-Physical Chemistry
Booklet	Question Paper 1

Time Allowed: 34 minutes

Score: /28

Percentage: /100

Grade Boundaries:

Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1.

Ma	Magnesium powder is used to generate heat for bat	tlefield soldiers wanting a hot drink.
9.0	0g of magnesium powder is added to 30.0g, an ex	cess, of water.
	$Mg + 2H_2O \rightarrow MQ$	$g(OH)_2 + H_2$
(a)	Calculate the amount, in mol, of magnesium.	
(b)	Calculate the mass of water that is in excess.	mol [1]
(c)	•) Calculate the volume of hydrogen gas, in dm ³ , p	g [2] produced at room temperature and pressure.
	Use the standard enthalpy change of formation enthalpy change of reaction for magnesium reaction.	dm ³ [1] n data in the table to calculate the standard
	substance	$\Delta_{\mathrm{f}}H^{\mathrm{o}}$ / kJ mol $^{-1}$
	H ₂ O	−285.8
	Mg(OH) ₂	-924.5
		kJ mol ⁻¹ [2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(e)		culate the heat energy, in kJ, released when 9.0 g of magnesium powder is added to 30.0 g vater.
		kJ [1]
(f)		en the magnesium powder and water are mixed, the temperature of the drink being heated rise to 60°C in about 10 minutes.
		culate how much energy, in kJ, is required to heat $150\mathrm{g}$ of the drink from $15\mathrm{°C}$ to $60\mathrm{°C}$ ume that the specific heat capacity of the drink is $4.2\mathrm{Jg}^{-1}\mathrm{K}^{-1}$.
		kJ [1]
(g)		v would using 9.0 g of magnesium granules affect the amount of energy released, and the perature reached by the drink? Explain your answer.
		[2]
(h)	Exo	thermic reactions that do not produce hydrogen gas are being explored.
	(i)	One example is mixing calcium oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution.
		pH
	(ii)	Another example is the reaction of phosphorus(V) oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution.
	(iii)	Calcium oxide reacts with phosphorus (V) oxide to make calcium phosphate (V) . Write are equation for this reaction.
		[1]

[Total: 15]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

2.	(a)	Chemists have recently established that four molecules of water are required for the dissociation of a single molecule of $HC1$ (reported in $Science$, 2009).
		Given that $1.00\mathrm{dm^3}$ of water contains 55.6 mol of $\mathrm{H_2O}$, calculate the maximum mass of hydrogen chloride, $\mathrm{HC}\mathit{l}$, that should therefore dissociate in $1.00\mathrm{dm^3}$ of water.
		~ [4]
		g [1]
	(b)	Commercial concentrated hydrochloric acid, $HCl(aq)$, fumes strongly on exposure to moist air and so is also known as 'fuming hydrochloric acid'.
		$1.00\mathrm{cm^3}$ of fuming hydrochloric acid was transferred with a graduated pipette to a $100\mathrm{cm^3}$ volumetric flask. The volume was made up to $100\mathrm{cm^3}$ with deionised water. The solution was labelled F . $10.0\mathrm{cm^3}$ of solution F was neutralised by $24.75\mathrm{cm^3}$ of $0.0500\mathrm{moldm^{-3}}$ of aqueous sodium hydroxide.
		Calculate the concentration of HCl in the fuming hydrochloric acid in $moldm^{-3}$. Give your final answer to three significant figures.
		mold m ⁻³ [4]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)		Historically, hydrochloric acid, $HCl(aq)$, was produced by mixing concentrated sulfuric acid with sodium chloride and dissolving the gas produced in water.		
	(i)	Write an equation for the production of gaseous hydrogen chloride by this method.		
		[1]		
	•	Irobromic acid, HBr(aq), cannot be prepared in the same way as hydrochloric acid ause a redox reaction occurs between hydrogen bromide and sulfuric acid.		
	(ii)	Write a balanced equation for the reaction of hydrogen bromide with sulfuric acid. [1]		
((iii)	Identify the oxidising agent in the reaction. Justify your answer using oxidation numbers.		
		[2]		
(d)	(i)	State and explain the trend in bond strength for the gases hydrogen chloride, hydrogen bromide and hydrogen iodide, in that order.		
		[1]		
	(ii)	State and explain the trend in acidic strength of hydrochloric acid, hydrobromic acid and hydroiodic acid.		
		[1]		
((iii)	Describe and explain the variation in boiling point of the gases hydrogen fluoride, hydrogen chloride, hydrogen bromide and hydrogen iodide.		
		[2]		

[Total: 13]