# **Basic Calculations**

# Question Paper 2

| Level      | Pre U                                 |
|------------|---------------------------------------|
| Subject    | Chemistry                             |
| Exam Board | Cambridge International Examinations  |
| Topic      | Basic Calculations-Physical Chemistry |
| Booklet    | Question Paper 2                      |

Time Allowed: 44 minutes

Score: /37

Percentage: /100

**Grade Boundaries:** 

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1. (a) Polyvinyl acetate (PVA) is produced on a large scale for use in glues.

[1]

[1]

[1]

- (i) Circle one repeat unit of the polymer.
- (ii) Draw the structure of the monomer used to make PVA.

(iii) Complete hydrolysis of PVA results in a polymer Q and a second product, R.

Identify R.

(iv) Polymer **Q** is unusual in that it dissolves in water. Suggest why it dissolves in water.

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(v) A logical monomer to make Q is shown.

In fact this molecule is not stable. Two isomers of this molecule, **S** and **T**, can be isolated. Draw the structures of S and T.

structure of S

structure of T

[2]

(vi) One of the isomers, **S** or **T**, is the monomer for the polymer PEG.

**PEG** 

State the functional group level of the carbon atoms in PEG and explain how this identifies which of the isomers, **S** or **T**, is the monomer for PEG.

| functional group level |    |
|------------------------|----|
| explanation            |    |
|                        |    |
|                        | [2 |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(b) (i) The complete hydrolysis of dimethyldichlorosilane,  $(H_3C)_2SiCl_2$  gives two products, V, which contains silicon, and W, which does not. The Si–C bond is stable towards hydrolysis. V has a molar mass of  $92\,\mathrm{g\,mol^{-1}}$ .

Draw the structure of **V** and give the formula of **W**.

structure of V formula of W .....

[2]

(ii) Three molecules of V can combine to form the molecule shown.

$$\begin{array}{c|cccc} \mathsf{CH_3} & \mathsf{CH_3} & \mathsf{CH_3} \\ | & | & | & | \\ \mathsf{HO-Si-O-Si-O-Si-OH} \\ | & | & | \\ \mathsf{CH_3} & \mathsf{CH_3} & \mathsf{CH_3} \end{array}$$

Five molecules of **V** can combine to form a molecule with a relative molecular mass of 370, where all the silicon atoms are in equivalent environments.

Suggest the structure of this molecule.

[1]

[Total: 11]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

**2.** Grignard reagents are formed readily by iodoalkanes. This question concerns the conversion of a ketone, pentan-2-one, to a tertiary alcohol using a Grignard reagent.

Table 5.1 summarises the volatilities and hazards of the reagents and the organic product.

Table 5.1

| substance          | volatility   | hazard                                 |  |
|--------------------|--------------|----------------------------------------|--|
| iodoethane         | moderate     | flammable; toxic; respiratory irritant |  |
| ethoxyethane high  |              | flammable; harmful                     |  |
| magnesium turnings | non-volatile | flammable                              |  |
| pentan-2-one low   |              | flammable; harmful                     |  |
| product alcohol    | very low     | flammable; irritant                    |  |

| a) (i) What are the two most important safety measures to guard against the hazards of<br>these materials? You can assume that the experimenters are wearing gloves, eye<br>protection and lab coats. |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                       |
|                                                                                                                                                                                                       |
| [2                                                                                                                                                                                                    |
| (ii) The day before the experiment anhydrous calcium chloride is added to the<br>iodoethane, sodium wire is added to the ethoxyethane and the glassware is left in<br>an oven.                        |
| Suggest the single purpose of these three precautions.                                                                                                                                                |
|                                                                                                                                                                                                       |
| [1                                                                                                                                                                                                    |

#### Step one

1.50 g of magnesium turnings is added to a pear-shaped flask with an equimolar quantity of iodoethane and  $20\,\mathrm{cm}^3$  of ethoxyethane.

Table 5.2 gives some physical properties of the reagents and the organic product.

# **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| substance                  | formula                                                      | molar<br>mass<br>/g mol <sup>-1</sup> | density<br>/gcm <sup>-3</sup> | solubility in<br>water | boiling point<br>/°C |
|----------------------------|--------------------------------------------------------------|---------------------------------------|-------------------------------|------------------------|----------------------|
| iodoethane                 | C <sub>2</sub> H <sub>5</sub> I                              | 156                                   | 1.93                          | slightly soluble       | 72                   |
| ethoxyethane               | C <sub>2</sub> H <sub>5</sub> OC <sub>2</sub> H <sub>5</sub> | 74                                    | 0.713                         | slightly soluble       | 35                   |
| magnesium Mg 24.3 turnings |                                                              | 1.74                                  | insoluble                     | 1110                   |                      |
| pentan-2-one               | C <sub>5</sub> H <sub>10</sub> O                             | 86                                    | 0.814                         | slightly soluble       | 102                  |
| product<br>alcohol         |                                                              |                                       | 0.823                         | slightly soluble       | 143                  |

| ethoxyethane            |                                                                                                     | $C_2H_5OC_2H_5$                  | 74            | 0.713                | slightly soluble     | 35                        |      |
|-------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------|---------------|----------------------|----------------------|---------------------------|------|
| magnesium<br>turnings   |                                                                                                     | Mg                               | 24.3          | 1.74                 | insoluble            | 1110                      |      |
| pentan-2-               | one                                                                                                 | C <sub>5</sub> H <sub>10</sub> O | 86            | 0.814                | slightly soluble     | 102                       |      |
| product<br>alcohol      |                                                                                                     |                                  |               | 0.823                | slightly soluble     | 143                       |      |
| (b) (i)                 | (b) (i) Calculate the amount, in mol, of magnesium used.                                            |                                  |               |                      |                      |                           |      |
| (ii) ·                  | amount = mol [1]  (ii) Calculate the volume of iodoethane required to react with the magnesium.     |                                  |               |                      |                      |                           |      |
| (iii)                   | volume =cm <sup>3</sup> [2]  i) Suggest the role of the ethoxyethane.  [1]                          |                                  |               |                      |                      |                           |      |
| Step two                |                                                                                                     |                                  |               |                      |                      |                           | [.]  |
| A crystal of mixture is |                                                                                                     |                                  | the mixture f | from <b>step o</b> i | ne to activate the   | magnesium, and t          | this |
|                         | Suggest why elevated temperatures and long periods of time are required for reactions such as this. |                                  |               |                      |                      |                           |      |
|                         |                                                                                                     |                                  |               |                      |                      |                           | [2]  |
| (ii)                    | Give t                                                                                              | he structural fo                 | rmula of the  | Grignard re          | eagent that is the p | product of <b>step tv</b> | VO.  |

.....[1]

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

#### Step three

| The mixture from step two is a | allowed to cool and | d 6.0 cm <sup>3</sup> of pentar | -2-one is added | dropwise |
|--------------------------------|---------------------|---------------------------------|-----------------|----------|
| The mixture is then gently hea | ited under reflux.  |                                 |                 |          |

| (d) | (i) | Draw the structure of the product of the reaction between the Grignard reagent and |
|-----|-----|------------------------------------------------------------------------------------|
|     |     | pentan-2-one which is present at the end of <b>step three</b> .                    |

[1]

(ii) Show with a calculation that the Grignard reagent is in excess. Assume that the reaction between magnesium and iodoethane in **step two** had 100% yield. Use your answer to (b)(i).

[2]

#### Step four

The mixture from **step three** is cooled using an ice bath, and then  $25\,\text{cm}^3$  of  $4\,\text{mol}\,\text{dm}^{-3}$  hydrochloric acid is slowly added.

(e) (i) Draw the structure of the tertiary alcohol produced by the reaction with dilute hydrochloric acid.

[1]

| (ii)  | What organic by-product results from the addition of the hydrochloric acid? |       |
|-------|-----------------------------------------------------------------------------|-------|
|       |                                                                             | . [1] |
| (iii) | Suggest why the mixture is cooled before adding the hydrochloric acid.      |       |
|       |                                                                             |       |

.....[1]

# **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

#### Step five

The mixture from step four is added to a separating funnel. The lower aqueous layer is separated and shaken successively with two 10 cm<sup>3</sup> portions of ethoxyethane, retaining the ethoxyethane extracts and combining them with the original ethoxyethane layer.

| (f)                                                                                                                                                                                                  | (i)                                        | Using the data in Table 5.2, e aqueous layer.                                                                           | explain why the ethoxyethane forms a layer above the |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|
|                                                                                                                                                                                                      |                                            |                                                                                                                         |                                                      |
|                                                                                                                                                                                                      |                                            |                                                                                                                         | [2]                                                  |
|                                                                                                                                                                                                      | (ii)                                       | Suggest the purpose of shaki                                                                                            | ing the aqueous layer with ethoxyethane.             |
|                                                                                                                                                                                                      |                                            |                                                                                                                         |                                                      |
|                                                                                                                                                                                                      |                                            |                                                                                                                         | [1]                                                  |
| Ste                                                                                                                                                                                                  | p six                                      | 4                                                                                                                       |                                                      |
| The                                                                                                                                                                                                  | com                                        | nbined ethoxyethane layer is w                                                                                          | ashed successively with 20 cm <sup>3</sup> of        |
|                                                                                                                                                                                                      | 2. s<br>3. 1                               | vater,<br>saturated sodium hydrogencark<br>I moldm <sup>-3</sup> aqueous sodium thic<br>saturated sodium chloride solut | osulfate,                                            |
| (g) The water and the three aqueous solutions used to wash the ethoxyethane lay<br>each intended to remove a particular impurity, either by dissolving or by che<br>reaction followed by dissolving. |                                            |                                                                                                                         |                                                      |
|                                                                                                                                                                                                      | Suggest the impurity removed in each step. |                                                                                                                         |                                                      |
|                                                                                                                                                                                                      | 1. v                                       | vater                                                                                                                   |                                                      |
|                                                                                                                                                                                                      |                                            | saturated sodium<br>nydrogencarbonate                                                                                   |                                                      |
|                                                                                                                                                                                                      | 3. s                                       | sodium thiosulfate                                                                                                      |                                                      |
|                                                                                                                                                                                                      | 4. s                                       | saturated sodium chloride                                                                                               | [4]                                                  |

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

#### Step seven

The ethoxyethane layer is allowed to stand over anhydrous magnesium sulfate.

(h) What is the purpose of the anhydrous magnesium sulfate?

[1]

(i) Using the data in Table 5.2, describe how you would obtain a pure sample of the product alcohol.

[2]