Energy changes

Question Paper 4

Level	Pre U	
Subject	Chemistry	
Exam Board	Cambridge International Examinations	
Topic	Energy changes- Physical Chemistry	
Booklet	Question Paper 4	

Time Allowed: 38 minutes

Score: /32

Percentage: /100

Grade Boundaries:

1.	This question is about oxygen and its compounds.			
	(a)	O ₂ a	and O ₃ are allotropes of oxygen.	
		Ехр	lain what is meant by the term allotrope.	
				. [1]
	(b)	A m	olecule of O ₃ contains a dative covalent bond.	
		(i)	What is meant by the term dative covalent bond?	
				. [1]
		(ii)	Suggest a dot-cross diagram to show the bonding in O ₃ .	

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	A recent study (reported in Proceedings of the National Academy of Sciences, USA, 2012)
-	has predicted that oxygen under 2TPa of pressure (1TPa = 10 ¹² Pa = 10 ⁷ bar) can exist as
	the long-chain polymer shown.

$$\cdots$$
-0-0-0-0-0- \cdots

At room temperature and pressure such a polymer will spontaneously turn into O₂.

(i)	What is meant by the term bond energy?

(ii) Calculate the energy change that accompanies the conversion of polymeric oxygen to O_2 , per mole of oxygen molecules formed.

.....[3]

$$- \left[O - O \right]_{n}^{-}(g) \longrightarrow nO_{2}(g)$$

bond	bond energy/kJ mol ⁻¹
0-0	144
0=0	498

energy change =kJmol⁻¹ [2]

d)		$\rm H^+$ ions do not exist in isolation in water. They bond to water molecules to form hydronium ions, $\rm H_3O^+$.		
	(i)	Predict and explain the shape of the hydronium ion.		
		[2]		
	(ii)	Which molecule with four atoms has the same total number of electrons as the hydronium ion?		
		[1]		
e) A proton in an H ₃ O ⁺ ion can form a hydrogen-bond with a water mole cation.		roton in an $\rm H_3O^+$ ion can form a hydrogen-bond with a water molecule to form an $\rm H_5O_2^+$ on.		
	(i)	Draw the $\rm H_5O_2^+$ cation, labelling the hydrogen-bond. Include relevant lone pairs, dipoles and bond angles.		
		[4]		
	(ii)	The hydronium ion, $\rm H_3O^+$, may be solvated inside the macrocyclic 18-crown-6 molecule shown.		
		Draw the hydronium ion inside the macrocycle, showing how it is attached to the ring.		

[1]

[Total: 17]

2.	Ma	gnesium powder is used to generate heat for battlefield soldiers wanting a hot drink.
	9.0	g of magnesium powder is added to 30.0 g, an excess, of water.
		$Mg + 2H_2O \longrightarrow Mg(OH)_2 + H_2$
	(a)	Calculate the amount, in mol, of magnesium.
	(b)	mol [1] Calculate the mass of water that is in excess.
		g [2]
	(c)	Calculate the volume of hydrogen gas, in dm ³ , produced at room temperature and pressure.
		dm ³ [1]
	(d)	Use the standard enthalpy change of formation data in Table 1.1 to calculate the standard enthalpy change of reaction for magnesium reacting with water.
		Table 1.1

substance	Δ _f H [⊕] / kJ mol ^{−1}
H ₂ O	-285.8
Mg(OH) ₂	-924.5

 kJ mol ⁻¹	[2]

(e)		culate the heat energy, in kJ, released when 9.0 g of magnesium powder is added to 0 g of water.
(5)	VA/I-	kJ [1]
(f)	hea Cald	the magnesium powder and water are mixed, the temperature of the drink being ted can rise to 60 °C in about 10 minutes. Coulate how much energy, in kJ, is required to heat 150 g of the drink from 15 °C to C. Assume that the specific heat capacity of the drink is 4.2 J g ⁻¹ K ⁻¹ .
		kJ [1]
(g)		would using 9.0g of magnesium granules affect the amount of energy released the temperature reached of the drink? Explain your answer.
		[2]
(h)	Exo	thermic reactions that do not produce hydrogen gas are being explored.
	(i)	One example is mixing calcium oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution.
		pH[2]
	(ii)	Another example is the reaction of phosphorus (V) oxide with water. Write an equation for this reaction and give the approximate pH of the resulting solution.
		pH[2]
	(iii)	Calcium oxide reacts with phosphorus $\!\!(V)$ oxide to make calcium phosphate. Write an equation for this reaction.
		[1]
		[Total: 15]

[Total: 15]