# Nitrogen, Phosphorus, Amonia

#### **Question Paper**

| Level      | Pre U                                |
|------------|--------------------------------------|
| Subject    | Chemistry                            |
| Exam Board | Cambridge International Examinations |
| Topic      | Nitrogen, Phosphorus, Amonia         |
| Booklet    | Question Paper                       |

Time Allowed: 34 minutes

Score: /28

Percentage: /100

**Grade Boundaries:** 

| 1. | (a) | Phosphorus forms a pentachloride, ${\rm PC}l_5$ . This exists as a simple molecule in the gas phase. |                                                                                                             |  |  |  |  |
|----|-----|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|--|--|--|--|
|    |     | (i)                                                                                                  | Draw the structure of $\mathrm{PC}l_5$ in the gas phase, including hashed and wedged bonds where necessary. |  |  |  |  |
|    |     |                                                                                                      | On your diagram label the bond angles. Name the shape of the molecule.                                      |  |  |  |  |
|    |     |                                                                                                      |                                                                                                             |  |  |  |  |
|    |     |                                                                                                      |                                                                                                             |  |  |  |  |
|    |     |                                                                                                      |                                                                                                             |  |  |  |  |
|    |     |                                                                                                      |                                                                                                             |  |  |  |  |
|    |     |                                                                                                      |                                                                                                             |  |  |  |  |
|    |     |                                                                                                      |                                                                                                             |  |  |  |  |

name of shape .....

| (ii)  | ${ m PC}l_5$ reacts with water to form phosphoric acid, ${ m H_3PO_4}.$ What <b>type</b> of reaction is taking place between ${ m PC}l_5$ and water? |
|-------|------------------------------------------------------------------------------------------------------------------------------------------------------|
|       | [1]                                                                                                                                                  |
| (iii) | Write down the oxidation number of phosphorus in phosphoric acid.                                                                                    |
|       | [1]                                                                                                                                                  |
| (iv)  | Suggest <b>one</b> advantage that phosphoric acid has over sulfuric acid as a reagent for dehydrating alcohols to form alkenes.                      |
|       |                                                                                                                                                      |
|       | [1]                                                                                                                                                  |
| (v)   | Write out a displayed formula for sulfuric acid, showing all of the chemical bonds.                                                                  |

[4]

| (b) | (i)   | Phosphorus oxychloride, $POCl_3$ , is an intermediate compound formed during the reaction between $PCl_5$ and water. Write the equation for the reaction of $PCl_5$ with water to form phosphorus oxychloride.                                                                     |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       | [1]                                                                                                                                                                                                                                                                                |
|     | (ii)  | Reactions of covalent chlorides with water can be rationalised as step-wise replacement of $-Cl$ with $-OH$ . Complete the three-step reaction sequence for the formation of phosphorus oxychloride from phosphorus pentachloride.                                                 |
|     |       | step 1 $PCl_5 + H_2O \rightarrow PCl_4OH + HCl$                                                                                                                                                                                                                                    |
|     |       | step 2                                                                                                                                                                                                                                                                             |
|     |       | step 3[2]                                                                                                                                                                                                                                                                          |
| (c) | The   | structure of phosphoric acid, H <sub>3</sub> PO <sub>4</sub> , is shown below.                                                                                                                                                                                                     |
|     | (i)   | Phosphoric acid may dimerise to produce diphosphoric acid, $H_4P_2O_7$ , and water. The reaction involves the condensation of an –OH group from each $H_3PO_4$ molecule to create an oxygen bridge between the two phosphoric acid units. Draw the structure of diphosphoric acid. |
|     |       | [1]                                                                                                                                                                                                                                                                                |
|     | (ii)  | This condensation reaction may continue to give triphosphoric acid, $H_5P_3O_{10}$ , and tetraphosphoric acid. Give the molecular formula of tetraphosphoric acid.                                                                                                                 |
|     |       | [1]                                                                                                                                                                                                                                                                                |
|     | (iii) | Give a general formula for polyphosphoric acids containing $n$ phosphorus atoms.                                                                                                                                                                                                   |
|     |       | [1]                                                                                                                                                                                                                                                                                |
|     |       |                                                                                                                                                                                                                                                                                    |

#### Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Recent research from a group led by Nobel-prize winning chemist Jean-Marie Lehn (*Proceedings of the National Academy of Science, USA,* 2009) has shown that a compound containing three cyclic diphosphates can improve the body's capacity for exercise. The compound is a derivative of inosotol, which is shown below.

(i) Give the empirical formula of inosotol.

.....[1]

(ii) In the new compound each pair of adjacent oxygen atoms from the inosotol molecule is part of a cyclic diphosphate ester. The overall charge of the inosotol-cyclic-phosphate species is 6–. Suggest a structure for the compound.

[2]

[Total: 17]

Nitrogen forms a variety of oxides and halides.

2.

|     | · ·              | • |   |  |   |  |
|-----|------------------|---|---|--|---|--|
| (a) | Nitrogen triiodi | J | - |  | - |  |
|     |                  |   |   |  |   |  |

| (a) | Nitrogen triiodide, $\mathrm{NI}_3$ , is an explosive that detonates with a snap even when only touched lightly. Given that the electronegativity value for nitrogen is 3.07 and for iodine is 2.36, indicate below the dipole in an N–I bond. |                                                                                                                                                                                                                                                          |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|     |                                                                                                                                                                                                                                                | N–I                                                                                                                                                                                                                                                      |  |
| (b) | (i)                                                                                                                                                                                                                                            | Nitrogen trifluoride, $NF_3$ , can be prepared by reacting ammonia with fluorine. In this reaction the fluorine oxidises the nitrogen in ammonia while the oxidation number of hydrogen is unchanged.                                                    |  |
|     |                                                                                                                                                                                                                                                | Give the equation for this reaction.                                                                                                                                                                                                                     |  |
|     |                                                                                                                                                                                                                                                | [1]                                                                                                                                                                                                                                                      |  |
|     | (ii)                                                                                                                                                                                                                                           | Nitrogen trifluoride is used to etch silicon in microelectronics. It is decomposed to its elements and the fluorine is used to attack the silicon.                                                                                                       |  |
|     |                                                                                                                                                                                                                                                | Give the equation for the decomposition of nitrogen trifluoride.                                                                                                                                                                                         |  |
|     |                                                                                                                                                                                                                                                | [1]                                                                                                                                                                                                                                                      |  |
| (   | (iii)                                                                                                                                                                                                                                          | Nitrogen trifluoride is a molecule that has attracted controversy recently for its possible potent contribution to the greenhouse effect. Draw the dot-cross diagram of this molecule; only include outer electrons. State the shape and the bond angle. |  |
|     |                                                                                                                                                                                                                                                | shano                                                                                                                                                                                                                                                    |  |
|     |                                                                                                                                                                                                                                                | shape                                                                                                                                                                                                                                                    |  |
|     |                                                                                                                                                                                                                                                | bond angle[3]                                                                                                                                                                                                                                            |  |
|     | (iv)                                                                                                                                                                                                                                           | Whereas nitrogen trifluoride is reasonably easy to handle, nitrogen trichloride is an extremely dangerous explosive. Suggest why nitrogen trifluoride is more stable than the other nitrogen trihalides.                                                 |  |

| (c) | N <sub>2</sub> O <sub>5</sub> is a less well-known oxide of nitrogen. |                                                                                                                                                                                                                                                                              |  |  |  |
|-----|-----------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | (i)                                                                   | ${ m N_2O_5}$ is the anhydride of nitric acid, which means that it reacts with water to produce the acid. Write an equation for ${ m N_2O_5}$ reacting with water.                                                                                                           |  |  |  |
|     |                                                                       | [1]                                                                                                                                                                                                                                                                          |  |  |  |
|     | (ii)                                                                  | $N_2O_5$ can be made by reacting nitric acid with a dehydrating agent such as phosphorus(V) oxide. Bearing in mind that phosphorus(V) oxide is the anhydride of phosphoric acid, $H_3PO_4$ , write an equation for the reaction between nitric acid and phosphorus(V) oxide. |  |  |  |
|     |                                                                       | [2]                                                                                                                                                                                                                                                                          |  |  |  |
| (   | (iii)                                                                 | In the solid state $\rm N_2O_5$ is an ionic compound. Given that $\rm N_2O_5$ is sometimes known as 'nitronium nitrate' write the ionic formula representation of $\rm N_2O_5$ .                                                                                             |  |  |  |
|     |                                                                       | [1]                                                                                                                                                                                                                                                                          |  |  |  |
|     |                                                                       | [Total: 11]                                                                                                                                                                                                                                                                  |  |  |  |