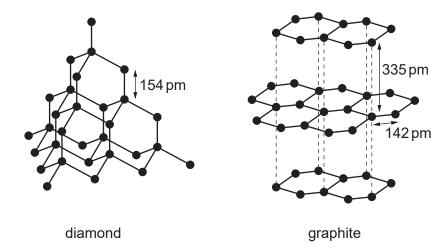
# **Periodic table**

### **Question Paper**

| Level      | Pre U                                |
|------------|--------------------------------------|
| Subject    | Chemistry                            |
| Exam Board | Cambridge International Examinations |
| Topic      | Periodic table- Inorganic chemsitry  |
| Booklet    | Question Paper                       |

Time Allowed: 42 minutes

Score: /35


Percentage: /100

**Grade Boundaries:** 

#### **Save My Exams! - The Home of Revision**

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1 The structures of two allotropes of carbon are shown.



(a) With reference to these structures

(b)

| (i)  | explain the meaning of the term allotropes,                                                                                                |
|------|--------------------------------------------------------------------------------------------------------------------------------------------|
|      |                                                                                                                                            |
|      |                                                                                                                                            |
|      | [1                                                                                                                                         |
| (ii) | state how and explain why the hardness and electrical conductivity of these allotropes differ.                                             |
|      |                                                                                                                                            |
|      |                                                                                                                                            |
|      |                                                                                                                                            |
|      |                                                                                                                                            |
|      |                                                                                                                                            |
|      |                                                                                                                                            |
|      | [4                                                                                                                                         |
|      | 2010 the Nobel Prize for Physics was awarded to two researchers from Mancheste versity for their work on preparing graphene from graphite. |
| (i)  | Describe the structure of graphene.                                                                                                        |
|      |                                                                                                                                            |

# **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

|     | (ii)  | Graphene can be prepared from graphite by using sticky tape. Use your knowledge of the bonding in graphite to explain why it is possible to create graphene by this method.        |
|-----|-------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |       | [11]                                                                                                                                                                               |
|     |       | [1]                                                                                                                                                                                |
| (c) |       | up 14 is considered to represent a spectrum of behaviour ranging from non-metal at the of the Group, through metalloid, to true metal at the bottom.                               |
|     | With  | reference to                                                                                                                                                                       |
|     | •     | the electrical conductivity of the element,                                                                                                                                        |
|     | •     | the structure and bonding in the oxides,                                                                                                                                           |
|     | justi | fy this statement.                                                                                                                                                                 |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       | [3]                                                                                                                                                                                |
| (d) | Here  | e is some information about Group 14 oxides.                                                                                                                                       |
|     |       | IV) oxide, $SnO_2$ , is easily prepared by oxidation of tin but lead(IV) oxide, $PbO_2$ , can only prepared by the action of very powerful oxidising agents on lead(II) compounds. |
|     | PbC   | $O_2$ decomposes on heating to lead(II) oxide, PbO.                                                                                                                                |
|     | PbC   | can also be prepared by heating lead in air but SnO is sensitive to oxidation.                                                                                                     |
|     | Ехр   | lain this information.                                                                                                                                                             |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       |                                                                                                                                                                                    |
|     |       | [2]                                                                                                                                                                                |
|     |       |                                                                                                                                                                                    |

[Total: 12]

### **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

| (a) | Wh   | y are these elements referred to as <i>d-block</i> elements?                                                    |
|-----|------|-----------------------------------------------------------------------------------------------------------------|
| (b) | (i)  | Give the full ground state electronic configuration of an atom of zinc.                                         |
|     | (ii) | Explain why zinc is <b>not</b> a transition element.                                                            |
|     | (,   | Explain Wily Zino to Not a transition clotholic.                                                                |
|     |      |                                                                                                                 |
| (c) |      | graph in Fig. 1.1 shows the pattern of first ionisation energies for the eler<br>ium to zinc.                   |
|     |      | Na Mg Al Si P S Cl Ar K Ca Sc Ti V Cr Mn Fe Co Ni Cu Zn elements                                                |
|     |      | Fig. 1.1                                                                                                        |
|     | (i)  | With reference to the graph in Fig. 1.1, explain the pattern of first ionisation end across Period 3, Na to Ar. |
|     |      |                                                                                                                 |
|     |      |                                                                                                                 |

.....[3]

# Save My Exams! – The Home of Revision For more awesome GCSE and A level resources, visit us at <a href="https://www.savemyexams.co.uk/">www.savemyexams.co.uk/</a>

|    | (II) | the elements Sc to Cu are relatively constant with only a slight general increase.                                                                                             |
|----|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    |      |                                                                                                                                                                                |
|    |      |                                                                                                                                                                                |
|    |      |                                                                                                                                                                                |
|    |      | [2]                                                                                                                                                                            |
| d) |      | crystal structures of the elements iron, copper and zinc are described, using the dard abbreviations, as BCC, CCP and HCP, respectively.                                       |
|    | (i)  | What does the abbreviation CCP stand for?                                                                                                                                      |
|    |      | [1]                                                                                                                                                                            |
|    | (ii) | In terms of layer structure representations, describe the HCP and CCP crystal structures.                                                                                      |
|    |      | HCP                                                                                                                                                                            |
|    |      | CCP[2]                                                                                                                                                                         |
|    |      |                                                                                                                                                                                |
| e) |      | nloride of a transition metal, $M$ , has a unit cell consisting of a CCP framework of ride anions, with the metal ions occupying half of the tetrahedral holes between the ns. |
|    | (i)  | What is meant by the term unit cell?                                                                                                                                           |
|    |      |                                                                                                                                                                                |
|    |      |                                                                                                                                                                                |
|    |      | [2]                                                                                                                                                                            |
|    | (ii) | State, and explain in terms of the ratio of anions to tetrahedral holes, what the formula of this compound is.                                                                 |
|    |      | formula                                                                                                                                                                        |
|    |      | explanation                                                                                                                                                                    |
|    |      |                                                                                                                                                                                |
|    |      | [2]                                                                                                                                                                            |

#### Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(f) Cobalt(II) chloride exists in two forms, **A**, which is blue, and **B**, which is pink.

Addition of a small amount of either of these solids to water results in a pink solution in which the colour is due to the presence of a complex ion, **C**.

On addition of concentrated hydrochloric acid this solution turns blue as another complex ion,  $\mathbf{D}$ , forms with a different shape to the complex ion  $\mathbf{C}$ .

| (i)   | Give the formulae of <b>A</b> , <b>B</b> , <b>C</b> , and <b>D</b> .                                            |       |
|-------|-----------------------------------------------------------------------------------------------------------------|-------|
|       | A                                                                                                               |       |
|       | В                                                                                                               |       |
|       | C                                                                                                               |       |
|       | D                                                                                                               | [4]   |
| (ii)  | Give the shape of, and bond angles in, the ion <b>C</b> .                                                       |       |
|       | shape                                                                                                           |       |
|       | bond angle                                                                                                      | [2]   |
| (iii) | Write an equation to illustrate the ligand exchange reaction involved in conversion of ${\bf C}$ to ${\bf D}$ . | the   |
|       |                                                                                                                 | [1]   |
| (iv)  | State and explain why the ion <b>D</b> has a different shape to the ion <b>C</b> .                              |       |
|       |                                                                                                                 |       |
|       |                                                                                                                 |       |
|       |                                                                                                                 | [1]   |
|       | [Total                                                                                                          | : 23] |