Transition Elements

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Transition elements- Inorganic Chemistry
Booklet	Question Paper

Time Allowed: 50 minutes

Score: /42

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1. The familiar light blue colour of copper(II) sulfate solution is due to the presence of the hexaaquacopper(II) ion, $[Cu(H_2O)_6]^{2+}(aq)$.

Equations for two different partial ligand substitution reactions of the hexaaquacopper(II) ion are shown. In the first of these equations 'en' represents diaminoethane, H₂NCH₂CH₂NH₂.

$$\begin{split} [\mathrm{Cu}(\mathrm{H_2O})_6]^{2+}(\mathrm{aq}) + \mathrm{en}(\mathrm{aq}) &\longrightarrow [\mathrm{Cu}(\mathrm{en})(\mathrm{H_2O})_4]^{2+}(\mathrm{aq}) + 2\mathrm{H_2O}(\mathrm{I}) \\ & \Delta_{\mathrm{r}} H^{\Theta} = -54\,\mathrm{kJ\,mol^{-1}}; \\ & \Delta_{\mathrm{r}} S^{\Theta} = +23\,\mathrm{J\,K^{-1}\,mol^{-1}} \\ [\mathrm{Cu}(\mathrm{H_2O})_6]^{2+}(\mathrm{aq}) + 2\mathrm{NH_3}(\mathrm{aq}) &\longrightarrow [\mathrm{Cu}(\mathrm{NH_3})_2(\mathrm{H_2O})_4]^{2+}(\mathrm{aq}) + 2\mathrm{H_2O}(\mathrm{I}) \\ & \Delta_{\mathrm{r}} H^{\Theta} = -46\,\mathrm{kJ\,mol^{-1}}; \\ & \Delta_{\mathrm{r}} S^{\Theta} = -8.4\,\mathrm{J\,K^{-1}\,mol^{-1}} \end{split}$$

		·
(a)		lain why the enthalpy changes, $\Delta_{\rm r} H^{\rm e}$, of the two partial ligand substitution reactions wn are so similar.
		[2]
(b)		nment on the values of the entropy changes, $\Delta_r S^{\Theta}$, of the two partial ligand substitution ctions shown and explain why they are different.
		[2]
(c)	The	cation produced in the reaction with ammonia, NH ₃ , can exist as two different isomers.
	(i)	State the type of isomerism exhibited by this cation.
		[1]
	(ii)	Draw and label the two different isomers of this cation.

(d) Further ligand substitution leads to the production of the complex ion [Cu(en) ₃] ²⁺ exhibits isomerism.					
	(i)	State the type of isomerism exhibited by [Cu(en) ₃] ²⁺ .			
		[1]			
	(ii)	Draw 3-D representations of the two isomers of [Cu(en) ₃] ²⁺ .			

[2]

[Total: 10]

2.	In most metals the atoms pack in one of three possible ways. One of these is can body-centred cubic (bcc), in which there is 32% empty space between the atoms. In other two common metal structures there is only 26% empty space, so these structures described as close-packed.									the			
	(a)	Giv	e the co	ordina	tion r	number of a n	netal	atom in a	close	e-pa	cked metal str	ucture.	
													. [1]
	(b)		nplete th ctures.	ne tabl	e to g	ive the name	s and	l layer stru	ucture	es of	the two close-	packed m	etal
				name	;					laye	er structure		
													[4]
	(c)	•				s between th by completin					sodium chlorid es.	le, NaC <i>l</i> ,	and
		(i)	NaCl c	an be	cons	idered to con	sist c	of a close-	pack	ed s	tructure of soc	lium ions	with
			chlorid	e ions	occu	pying the					holes.		[1]
		(ii)	CaF ₂	can	be	considered	to	consist	of	а	close-packed	l lattice	of
							io	ns with				i	ions
			occupy	ing th	e				ho	les.			[2]

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(d) Table 4.1 gives the electronegativities of sodium, silver and the halogens.

Table 4.1

element	sodium	silver	fluorine	chlorine	bromine	iodine
electronegativity	0.87	1.87	4.19	2.87	2.69	2.36

Table 4.2 gives the theoretical (from the Born-Landé equation) and experimental (from a Born-Haber cycle) lattice energies for the sodium and silver halides.

Table 4.2

compound	experimental lattice energy /kJ mol ⁻¹	theoretical lattice energy /kJ mol ⁻¹
NaF	918	912
NaC1	780	770
NaBr	742	735
NaI	705	687
AgF	958	920
AgC1	905	833
AgBr	891	816
AgI	889	778

(i)	Use the data in Table 4.1 to explain why there is generally good agreement between the experimental and theoretical values of the lattice energies for the sodium halides.
	[2]
	[-]
(ii)	Identify and explain the trend that is evident in the magnitudes of the differences between the experimental and theoretical values of the lattice energies for the silver halides.

(e)	Restless Legs Syndrome (RLS), also known as Wittmaack-Ekbom's syndrome, is a condition characterised by an uncontrollable urge to move one's legs to alleviate odd or uncomfortable sensations. The condition is not well understood but one possible cause is thought to be low iron levels in the body. Conversely, if iron levels are too high then this can also cause problems as free iron readily produces insoluble compounds and either iron(II) or iron(III) can catalyse the Fenton reaction, which leads to cell damage and eventually cell death.								
	(i)	What is the name of the iron-containing protein found in red-blood cells?							
			[1]						
	(ii)	What role does ferritin play in preventing the problems ass levels of iron?	sociated with high or low						
			[2]						
(f)		n reference to the data in equations 4.1 and 4.2 explain appounds in the laboratory are normally made up and stored	•						
	equ	ation 4.1 $Fe(OH)_3$ (s) + $e^- \rightarrow Fe(OH)_2$ (s) + OH^- (aq)	$E^{\Theta} = -0.56 \text{V}$						
	equ	ation 4.2 Fe ³⁺ (aq) + e ⁻ \rightarrow Fe ²⁺ (aq)	$E^{\Theta} = +0.77 \text{V}$						
			[3]						
			[Total: 19]						

3.	can	The complex compound diamminedichloroplatinum(II) has two isomeric forms, one of which can be prepared from potassium tetrachloroplatinate(II) as shown in the reaction sequence in Fig. 4.1.				
	K	$K_2[PtCl_4] \longrightarrow K_2[PtI_4] \longrightarrow \mathbf{X} \longrightarrow [Pt(H_2O)_2(NH_3)_2]$	$(NO_3)_2 \rightarrow diamminedichloroplatinum(II)$			
		Fig. 4.1				
	Compound X has the composition by mass Pt 40.37%, I 52.59%, N 5.80% and H 1.24% and a relative molecular mass of 483.					
	(a)	Calculate the molecular formula of X , draw ligand-platinum-ligand bond angle.	v its two possible structures and indicate the			
			[6]			
	(b)	Cobalt forms both octahedral and tetrahedral ion of cobalt with each shape and, in each ca	I complexes. Give the identities of one complex se, state the ligand-cobalt-ligand bond angle.			
		octahedral	tetrahedral			
		bond angle	bond angle [3]			
	(c)	With reference to the 3-D orientation of d or explain why such complexes are usually color	bitals in an octahedral transition metal complex ured.			

.....[4]

[Total: 13]