Alcohols

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Alcohols-Lower functional group level
Booklet	Question Paper

Time Allowed: 23 minutes

Score: /19

Percentage: /100

Grade Boundaries:

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

1.	The use of methanol, CH ₃ OH, in fuel cells is the subject of considerable resear commercial production of methanol involves a two step process.			ch. A		
	Step 1	production of hy	drogen gas			
	equatio	on 4.1	$CH_4(g) + H_2(g)$	$O(g) \rightleftharpoons CO(g) + 3H$	$I_2(g)$ $\Delta_r H^{\Theta} = +206 \text{kJ}$	mol ⁻¹
	A tempe	erature of 850°C	and pressure of	1500 kPa are used in	this step.	
	Step 2	reaction of hydro	ogen and carbon	monoxide to form metl	hanol	
	equatio	on 4.2	CO(g) + 2H	$_{2}(g) \rightleftharpoons CH_{3}OH(g)$	$\Delta_{\rm r}H^{\Theta} = -92{\rm kJ}$	mol ⁻¹
	A tempe ZnO/Cr		C and pressure o	of 7500 kPa are used i	n this step, with a catal	yst of
	(a) (i)	Write an expre	ssion for the equ	librium constant, K_p , fo	or the reaction in equatio	n 4.2 .
						[1]
	(ii)		tracted. It contain	-	ned equilibrium, a mixton, 462g of carbon mon	
		Calculate the r	mole fraction of e	ach gas in the mixture		
			mole fraction	on of hydrogen =		
		mo	ole fraction of car	bon monoxide =		
			mole fraction	on of methanol =		[2]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(iii)	Use your values from (a)(ii) to calculate the value of the equilibrium constant, K_p , for the reaction shown in equation 4.2.
	$K_p =[2]$
(b) (i)	Elevated temperatures are used in both steps, with the temperature used in step 1 being much higher than in step 2.
	Explain why.
	[3]
(ii)	Pressures higher than atmospheric are used in both steps, with the pressure used in step 2 being much higher than in step 1.
	Explain why.
	[3]

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	In a	direct methanol fuel cell, DMFC, methanol is oxidised at the anode.	
	The protons produced migrate across the proton exchange membrane, PEM, to the cathode where oxygen is reduced to water.		
	The standard electrode potential of the oxygen cathode is +1.23 V.		
	(i)	Write the half-equation for the reduction of oxygen to water in acidic conditions at the cathode.	
		[1]	
	(ii)	The electrode potential for	
		$6\mathrm{H^{+}}$ + $6\mathrm{e^{-}}$ + $\mathrm{CO_{2}}$ \Longrightarrow $\mathrm{CH_{3}OH}$ + $\mathrm{H_{2}O}$	
		is +0.02 V.	
		Write the overall equation for the reaction taking place in the DMFC and calculate the standard cell potential.	
		equation	
		standard cell potential =V [2]	

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at <u>www.savemyexams.co.uk/</u>

(d)	One method for the construction of a DMFC involves electroplating a layer of platinum onto the surface of the proton exchange membrane, PEM. The electrolyte for this process consists of a solution of tetraammineplatinum(II) chloride, $Pt(NH_3)_4Cl_2$, and the PEM is the cathode in the electrolytic cell.				
	(i)	State the shape and bond angle of the tetraammineplatinum(II) ion, $[Pt(NH_3)_4]^{2+}$.			
		shape			
		bond angle[1]			
	(ii)	Suggest the half-equation for the cathode reaction that deposits platinum on the PEM.			
		[1]			
(e)		one such preparation a PEM with a surface area of $25\mathrm{cm}^2$ was immersed in an strolyte bath and a current of $3.5\times10^{-3}\mathrm{Acm}^{-2}$ was passed for 95 minutes.			
	Cald	culate the mass of platinum deposited onto the surface of the PEM.			

[3]

[Total: 19]