Infra-red # **Question Paper** | Level | Pre U | |------------|--------------------------------------| | Subject | Chemistry | | Exam Board | Cambridge International Examinations | | Topic | Infra-red | | Booklet | Question Paper | Time Allowed: 13 minutes Score: /11 Percentage: /100 **Grade Boundaries:** #### Save My Exams! - The Home of Revision For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ - (a) Chemists from the University of Cambridge have used Au₅₅ nanoparticles to catalyse a reaction of oxygen with phenylethene (styrene), C₆H₅-CH=CH₂, (*Nature*, 2008). Three products, A, B and C, were observed. Use the following observations to complete the structure of A, B and C. - The phenyl (C₆H₅-) group remains unchanged in **A**, **B** and **C**. - A has the molecular formula C₇H₆O; **B** and **C** both have the molecular formula C₈H₈O. - When warmed with Tollens' reagent (ammoniacal silver nitrate) compound A produces a silver mirror but compounds B and C do not. - The infra-red spectra of compounds A and B each have an intense peak at around 1700 cm⁻¹ but that of compound C does not. - None of the compounds' infra-red spectra show any broad signals above 3000 cm⁻¹. - Compound C is the most reactive and unstable of the three. It contains a ring of three atoms. structure of A structure of B $C_6 H_5 -$ C_6H_5- Structure of C $C_{6}H_{5}-$ [3] **(b) (i)** Draw a dot-cross diagram for the hydroxonium ion, H₃O⁺, showing only outer-shell electrons. ### **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (11) | Alkyl oxonium ions are analogues of H_3O^+ where the oxygen atom is bonded to | |------|--| | | alkyl groups rather than to hydrogen atoms. The tripropyl oxonium ion is a typical | | | alkyl oxonium ion. | | | | | • | Write down the molecular formula of the tripropyl oxonium ion. | | |---|---|-----| | • | Deduce the m/z of the molecular ion peak in its mass spectrum. | | | • | Deduce the number of signals in its ¹³ C NMR spectrum. | | | | | [3] | - (iii) Oxatriquinane is an alkyl oxonium ion whose synthesis was reported recently (Journal of the American Chemical Society, 2008). It was found to be surprisingly stable in water, and has: - a molecular formula of CoH15O+ - only two signals in its ¹³C NMR spectrum - no carbon-carbon multiple bonds - multiple rings in its structure. Suggest a structure for oxatriquinane. ### **Save My Exams! – The Home of Revision**For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/ | (c) | Chemists have recently synthesised the smallest "beakers" for carrying out chemical reactions (<i>Nature Chemistry</i> , 2009). The "beakers" are the junctions from a network of hollow polymer nanofibres. The volume of the beakers is about $4 \times 10^{-18} \mathrm{dm}^3$. | | | |-----|---|---|--| | | (i) | A "beaker" is full of a solution of glucose of concentration $5 \times 10^{-4} \text{mol dm}^{-3}$. Calculate the amount (in moles) of glucose in the "beaker". | | | | | mol [1] | | | | (ii) | Use your answer to part (i) to calculate the number of glucose molecules in the "beaker". | | | | | [1] | | | | | [Total: 11] | |