Infra-red

Question Paper

Level	Pre U
Subject	Chemistry
Exam Board	Cambridge International Examinations
Topic	Infra-red
Booklet	Question Paper

Time Allowed: 13 minutes

Score: /11

Percentage: /100

Grade Boundaries:

Save My Exams! - The Home of Revision

For more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

- (a) Chemists from the University of Cambridge have used Au₅₅ nanoparticles to catalyse a reaction of oxygen with phenylethene (styrene), C₆H₅-CH=CH₂, (*Nature*, 2008). Three products, A, B and C, were observed. Use the following observations to complete the structure of A, B and C.
 - The phenyl (C₆H₅-) group remains unchanged in **A**, **B** and **C**.
 - A has the molecular formula C₇H₆O;

B and **C** both have the molecular formula C₈H₈O.

- When warmed with Tollens' reagent (ammoniacal silver nitrate) compound A produces a silver mirror but compounds B and C do not.
- The infra-red spectra of compounds A and B each have an intense peak at around 1700 cm⁻¹ but that of compound C does not.
- None of the compounds' infra-red spectra show any broad signals above 3000 cm⁻¹.
- Compound C is the most reactive and unstable of the three. It contains a ring
 of three atoms.

structure of A

structure of B

 $C_6 H_5 -$

 C_6H_5-

Structure of C

 $C_{6}H_{5}-$

[3]

(b) (i) Draw a dot-cross diagram for the hydroxonium ion, H₃O⁺, showing only outer-shell electrons.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(11)	Alkyl oxonium ions are analogues of H_3O^+ where the oxygen atom is bonded to
	alkyl groups rather than to hydrogen atoms. The tripropyl oxonium ion is a typical
	alkyl oxonium ion.

•	Write down the molecular formula of the tripropyl oxonium ion.	
•	Deduce the m/z of the molecular ion peak in its mass spectrum.	
•	Deduce the number of signals in its ¹³ C NMR spectrum.	
		[3]

- (iii) Oxatriquinane is an alkyl oxonium ion whose synthesis was reported recently (Journal of the American Chemical Society, 2008). It was found to be surprisingly stable in water, and has:
 - a molecular formula of CoH15O+
 - only two signals in its ¹³C NMR spectrum
 - no carbon-carbon multiple bonds
 - multiple rings in its structure.

Suggest a structure for oxatriquinane.

Save My Exams! – The Home of RevisionFor more awesome GCSE and A level resources, visit us at www.savemyexams.co.uk/

(c)	Chemists have recently synthesised the smallest "beakers" for carrying out chemical reactions (<i>Nature Chemistry</i> , 2009). The "beakers" are the junctions from a network of hollow polymer nanofibres. The volume of the beakers is about $4 \times 10^{-18} \mathrm{dm}^3$.		
	(i)	A "beaker" is full of a solution of glucose of concentration $5 \times 10^{-4} \text{mol dm}^{-3}$. Calculate the amount (in moles) of glucose in the "beaker".	
		mol [1]	
	(ii)	Use your answer to part (i) to calculate the number of glucose molecules in the "beaker".	
		[1]	
		[Total: 11]	