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1 Using standard summation results, prove that
nÐ
r=1

�4r3 − 6r2 + 4r − 1� = n4. [4]

2 The parabola y = px2 + qx + r passes through the points �−1, −1�, �9, 53� and �−11, 45�.
(a) (i) Write down a system of three equations in p, q and r. [2]

(ii) Formulate this system as a matrix equation in the form Cx = a, where C is a 3 × 3 matrix,

x is an unknown column vector and a is a constant vector. [1]

(b) Using any suitable method, determine the values of p, q and r. [4]

3 (a) (i) Write down the equations of the asymptotes of the curve y = x − 1

x − 4
. [2]

(ii) Sketch this curve, showing all significant features. [4]

(b) Determine the equation of the oblique asymptote of the curve y = �x − 1�2
x − 4

. [2]

4 A curve has polar equation r = 3 + �
2 sin1, for 1

4
π ≤ 1 ≤ 3

4
π. Find, in its simplest exact form, the area

of the region enclosed by the curve and the lines 1 = 1
4
π and 1 = 3

4
π. [6]

5 The equation 2x3 + 3x2 − 5x − 12 = 0 has roots !, " and '.
(a) State the value of !"'. [1]

A second cubic equation, with integer coefficients, has roots ! + 12

"' , " + 12

'! and ' + 12

!" .

(b) (i) Show that these new roots can be written as 3!, 3" and 3' respectively. [2]

(ii) Find the second cubic equation. [3]

6 (a) Given the matrix X =
@
2 0

1 1

A
, calculate X2, X3 and X4. [3]

(b) Conjecture an expression for Xn for positive integers n and prove the result by induction. [4]

(c) Is the result still true when n = −1? Justify your answer. [3]

7 (a) (i) Express the complex number 7 = 1 + i
�
3 in the form rei1, where r > 0 and 0 < 1 < 2π. [2]

(ii) Hence show that 77 is an integer multiple of 7. [3]

(b) Solve the equation z7 = 64 − 64i
�
3. Give each answer in the form r�cos 1 + i sin1�, where r > 0

and 0 < 1 < 2π. [5]
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8 A non-abelian group G, with identity element e, contains an element a of order 4 and an element b

such that a3b = ba.

(a) State, with justification, whether G is a cyclic group. [1]

(b) Show, in any order, that

³ b = aba,

³ b = a2ba2,

³ ba3 = ab.

Justify fully each step of your working. [7]

9 The function f is defined for −1 ≤ x ≤ 1 by f�x� = cos−1x.

(a) (i) Sketch the graph of y = f�x�. [1]

(ii) Given that y = cos−1x, prove that dy
dx

= − 1�
1 − x2

. [4]

(b) Determine Ó cos−1x dx. [5]

10 (a) Use the vector product to find the area of triangle ABC with vertices A �1, 2, 3�, B �5, 1, −3� and
C �2, 3, −1�. [4]

(b) (i) Calculate the volume of tetrahedron OABC, where O is the origin. [3]

(ii) Deduce the shortest distance from O to the plane ABC. [2]

(c) Determine the shortest distance between the line through O and A and the line through B and C.

Give your answer in an exact surd form. [5]

11 The curve C has equation y = 2
3
x
3
2 for 0 ≤ x ≤ 15.

(a) The length of C is denoted by L. Showing full working, determine the value of L. [4]

(b) The area of the surface generated when C is rotated once about the x-axis is denoted by A.

(i) Show that A = 4
3
π Ó 15

0

x

?�
x + 1

2

�2 − 1
4
dx. [3]

(ii) Use a suitable substitution to show that the exact value of A is

406π�15 + 1
12
π ln�31 + 8

�
15

�
. [8]
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12 It is given that the solution, y, of the differential equation

d2y

dx2
+ dy

dx
sinh x + 4y cosh x = 8ex �*�

satisfies y = 3 and
dy

dx
= 4 when x = ln 2.

(a) (i) Find the Taylor series expansion for y about x = ln 2 up to and including the quadratic term.

[5]

(ii) Deduce an approximation for y when x = 0.75. Give your answer to 3 decimal places. [1]

Three students try different methods to calculate approximations for the value of y when x = 0.75.

They do this by replacing sinh x, cosh x and ex in �*� by the first few terms of their Maclaurin series

and getting an approximate differential equation which they hope to be able to solve instead.

The first student uses quadratic approximations to sinh x, cosh x and ex; the second student uses linear

approximations; and the third student uses constant approximations.

(b) (i) Find the approximate differential equations obtained by the three students. [4]

(ii) For the approximate differential equation obtained by the second student, find a particular

integral. [3]

(iii) Solve the approximate differential equation obtained by the third student and use your

answer to calculate a second approximation for the value of y when x = 0.75. Show full

working and give the final answer correct to 3 decimal places. [9]
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