

Cambridge O Level

CANDIDATE NAME					
CENTRE NUMBER			CANDIDATE NUMBER		

CHEMISTRY 5070/21

Paper 2 Theory October/November 2023

1 hour 45 minutes

You must answer on the question paper.

No additional materials are needed.

INSTRUCTIONS

- Answer all questions.
- Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
- Write your name, centre number and candidate number in the boxes at the top of the page.
- Write your answer to each question in the space provided.
- Do **not** use an erasable pen or correction fluid.
- Do not write on any bar codes.
- You may use a calculator.
- You should show all your working and use appropriate units.

INFORMATION

- The total mark for this paper is 80.
- The number of marks for each question or part question is shown in brackets [].
- The Periodic Table is printed in the question paper.

BLANK PAGE

1 Choose from	the list of	compounds to	answer these of	uestions.
---------------	-------------	--------------	-----------------	-----------

calcium oxide

carbon dioxide

carbon monoxide

lead chloride

propan-1-ol

sodium nitrate

sodium sulfate

sulfur dioxide

water

Each compound may be used once, more than once or not at all.

Identify the compound that:

(a) is a toxic gas produced by the incomplete combustion of carbon-containing compounds
[1
(b) turns anhydrous copper(II) sulfate blue
[1
(c) leads to deoxygenation of water in rivers
[1
(d) in aqueous solution, gives a white precipitate on addition of acidified aqueous barium chloride
[1
(e) contains an anion with a charge of -1.
[1
[Total: 5

	2	This	question	is	about	metals	s.
--	---	------	----------	----	-------	--------	----

Т	his question is	about metals.		
(a		is an element in Group a transition element.	I of the Periodic Table.	
	State two	physical properties of po	otassium that are different from those of	of copper.
	1			
	2			[2]
(k	o) Complete t	the diagram in Fig. 2.1 to	o show the electronic configuration of	a potassium ion.
	Include the	charge on the ion.		
			K)	
			Fig. 2.1	[2]
(0	c) Table 2.1 s	hows the observations	when four different metals react with c	old water.
			Table 2.1	
		metal	observations	
		cerium	bubbles form slowly	
		notaccium	hubbles form rapidly	

metal	observations		
cerium	bubbles form slowly		
potassium	bubbles form rapidly		
uranium	bubbles form very slowly		
vanadium	no bubbles seen		

Put the four metals in order of their reactivity. Put the least reactive metal first.

least reactive ——		<u> </u>	most reactive

[1]

Deduce the number of protons and neutrons in the copper atom shown.
⁶⁵ ₂₉ Cu
number of protons
number of neutrons[2]
In the presence of oxygen, copper reacts with sulfuric acid, $\rm H_2SO_4$, to form copper(II) sulfate and water.
Construct the symbol equation for this reaction.
[2]
Copper can be used as a catalyst.
(i) State how a catalyst increases the rate of a chemical reaction.
[1]
(ii) Name the catalyst used in the Contact process.
[1]
Give two reasons why copper is used in electrical wiring.
1
2[2]
[Total: 13]

- **3** A student investigates the reaction of small pieces of zinc with dilute hydrochloric acid at 25 °C. The dilute hydrochloric acid is in excess.
 - (a) Complete the equation for this reaction by adding state symbols.

$$Zn(.....) + 2HCl(.....) \rightarrow ZnCl_2(aq) + H_2(.....)$$
 [2]

(b) Fig. 3.1 shows the volume of hydrogen released as the reaction proceeds.

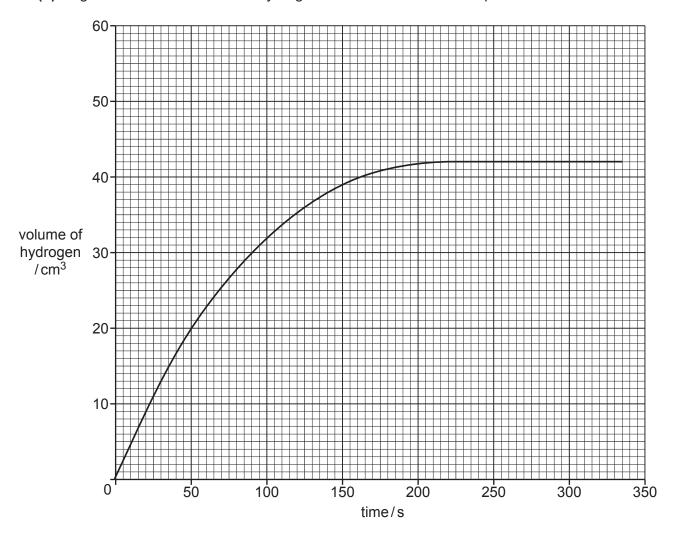


Fig. 3.1

(i) Deduce the time taken from the beginning of the experiment to collect 39 cm³ of hydrogen.

(ii) The student repeats the experiment using dilute hydrochloric acid with a higher concentration.

All other conditions stay the same.

Draw a line on the grid in Fig. 3.1 to show how the volume of hydrogen changes when dilute hydrochloric acid with a higher concentration is used. [2]

(c)	The student repeats the experiment at 30 °C.
	All other conditions stay the same.
	Describe and explain, using collision theory, how the rate of reaction differs when a temperature of 30 °C is used.
	[2]
(d)	A sample of hydrogen is put into a gas syringe. The end of the gas syringe is then blocked so that no gas can escape.
	Explain, using kinetic particle theory, why decreasing the pressure in the gas syringe increases the volume of gas when the temperature stays the same.
	[1]
	[Total: 8]

(a)	Concentrated aqueous calcium bromide is electrolysed using graphite electrodes.	
	Predict the product at each electrode.	
	anode	
	cathode	 2]
(b)	Molten calcium bromide is electrolysed using graphite electrodes.	ر _
	Construct the ionic half-equation for the reaction at each electrode when molte calcium bromide is electrolysed.	nę
	anode	
	cathode	
(0)		2]
(c)	Describe a test for aqueous bromide ions. Include the observations for a positive result.	
	test	
	observations	 2]
(d)	Calcium reduces zinc ions to zinc.	
	Ca + $Zn^{2+} \rightarrow Zn + Ca^{2+}$	
	(i) Explain, in terms of the movement of electrons, how calcium acts as a reducing agent this equation.	in
	[1]
	(ii) State the oxidation number of the Zn ²⁺ ion.	
	[[1]

(e) Sulfur dibromide is produced when sulfur reacts with bromine.

Complete Fig. 4.1 to show the dot-and-cross diagram for a molecule of sulfur dibromide. Show only the outer shell electrons.

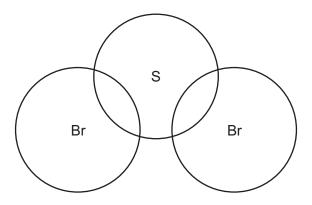


Fig. 4.1

[2]

[Total: 10]

5 (a) Fig. 5.1 shows the displayed formula of compound **A**.

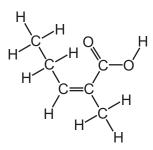


Fig. 5.1

	(1)	Draw a circle around the functional gr	oup on Fig. 5.1 tr	nat is also present in alkenes.	[1]
	(ii)	Deduce the molecular formula of com	pound A .		
					[1]
	(iii)	Compound A is a solid at 20 °C.			
		Describe the motion and arrangemen	t of the particles i	n a solid.	
		motion			
		arrangement			
					[2]
(b)	Alke	enes react with hydrogen in the presen	ce of a catalyst.		
	(i)	Draw a circle around the type of react	tion that takes pla	ice.	
		addition condensation	neutralisation	substitution	[1]
	(ii)	Name the catalyst used.			

(c) Fig. 5.2 shows the structure of compound **B**.

Fig. 5.2

Compound **B** can be polymerised.

Draw two repeat units of the polymer formed when compound B is polymerised.

[2]

(d) Fig. 5.3 shows part of the structure of a protein.

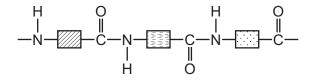


Fig. 5.3

(i) Name the type of monomer used to make proteins.

		[1]
(ii)	Name the linkage in proteins.	

[Total: 10]

BLANK PAGE

The equation for the Haber process used in the production of ammonia is shown.

6

		$N_2 + 3H_2 \rightleftharpoons 2NH_3$
(a)	(i)	The nitrogen for this process comes from the air.
		State the percentage by volume of nitrogen in clean, dry air.
		[1]
	(ii)	State a source of hydrogen for the Haber process.
		[1]
(b)	The	forward reaction in the Haber process is exothermic.
	(i)	Explain, in terms of bond making and bond breaking, why this reaction is exothermic.
		[2]
	(ii)	The transfer of thermal energy in a chemical reaction is called the enthalpy change.
		Write the symbol for an enthalpy change. Include the sign for an exothermic enthalpy change.
		[1]
(c)		eous ammonia is an alkali. eous ammonia reacts with dilute nitric acid to form a salt.
	(i)	Name this salt.
		[1]
	(ii)	Name the experimental technique used to make a solution of this salt from dilute nitric acid and aqueous ammonia.
		[1]
		[Total: 7]

7 (a) Dilute ethanoic acid reacts with aqueous calcium hydroxide.

$$\mbox{2CH}_3\mbox{COOH + Ca(OH)}_2 \boldsymbol{\begin{tabular}{l} \end{tabular}} \begin{tabular}{l} \end{tabular} \begin{tabular}{$$

A student reacts $25.0\,\mathrm{cm^3}$ of $0.0100\,\mathrm{mol/dm^3}$ aqueous calcium hydroxide with dilute ethanoic acid using thymolphthalein as an indicator.

A volume of $12.5\,\mathrm{cm^3}$ of dilute ethanoic acid reacts exactly with the $0.0100\,\mathrm{mol/dm^3}$ aqueous calcium hydroxide.

Calculate the concentration, in mol/dm³, of the dilute ethanoic acid.

		concentration of dilute ethanoic acid mol/dm ³	[3]
(b)	Stat	te the colour of thymolphthalein in aqueous calcium hydroxide.	
			[1]
(c)	Etha	anoic acid is a weak acid.	
	(i)	Define the term weak in the phrase weak acid.	
			[1]
	(ii)	Write the formula of the ion present in aqueous solutions of acids.	
			[4]

(d) Dilute ethanoic acid reacts with sodium carbona

$$\mbox{2CH}_3\mbox{COOH} + \mbox{Na}_2\mbox{CO}_3 \, \longrightarrow \, \mbox{2CH}_3\mbox{COONa} \, + \, \mbox{H}_2\mbox{O} \, + \, \mbox{CO}_2$$

Calculate the volume, measured at r.t.p., of carbon dioxide produced, in cm³, when 3.18g of sodium carbonate reacts with excess dilute ethanoic acid.

		volume of carbon dioxide cm ³	[2]
(e)	Sulf	fur dioxide contributes to acid rain.	
	(i)	State one source of sulfur dioxide in the air.	
			[1]
	(ii)	Describe one method of reducing the amount of sulfur dioxide getting into the air.	
			[1]
	(iii)	In the Contact process, sulfur dioxide reacts with oxygen.	
		Complete the symbol equation for this reaction.	
		$2SO_2 + O_2 \Longrightarrow \dots$	[1]

[Total: 11]

BLANK PAGE

8 (a) Ethanoic acid is manufactured from methanol.

$$CH_3OH(g) + CO(g) \rightleftharpoons CH_3COOH(g)$$

The forward reaction is exothermic.

	(i)	Predict and explain the effect, if any, on the position of equilibrium when the pressure decreased and the temperature remains constant.	e is
			[2]
	(ii)	Predict and explain the effect, if any, on the position of equilibrium when the temperat is decreased and the pressure remains constant.	ure
			[1]
(b)	Etha	anoic acid can be produced by bacterial oxidation.	
		cribe one other method of making ethanoic acid by oxidising an alcohol other thanol.	han
	nam	ne of alcohol	
	nam	ne of oxidising agent	
			[2]
(c)	Etha	anoic acid reacts with propan-1-ol, CH ₃ CH ₂ CH ₂ OH, to produce an ester.	
	Nan	ne the ester and draw its displayed formula.	
	nam	ne	
	disp	played formula	

9 (a) Table 9.1 shows the melting points and relative electrical conductivities of three elements.

Table 9.1

	carbon (graphite)	magnesium	phosphorus
melting point /°C	3652	649	44
relative electrical conductivity of solid	good	good	poor

Use ideas about structure and bonding to explain:

(i)	the difference in the melting points of magnesium and phosphorus
	[3]
(ii)	the difference in the electrical conductivities of graphite and phosphorus.
	[2]
Dia	mond and graphite are different forms of carbon.
Exp	lain, in terms of its structure and bonding, why diamond is used in cutting tools.
	ioi

© UCLES 2023 5070/21/O/N/23

(b)

(c)	A compound of phosphorus, oxygen and chlorine contains 20.2% phosphorus, 10.4% oxygen and 69.4% chlorine by mass.
	Deduce the empirical formula of this compound.
	empirical formula[2]
	[Total: 9]

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

																					<u> </u>
	₹	2 Z	helium 4	10	Ne	neon 20	18	Ą	argon 40	36	궃	krypton 84	54	×e	xenon 131	98	R	radon	118	Og	oganesso -
	=			6	ш	fluorine 19	17	Cl	chlorine 35.5	35	Ŗ	bromine 80	53	Н	iodine 127	85	¥	astatine -	117	<u>S</u>	tennessine -
	>			8	0	oxygen 16	16	ഗ	sulfur 32	34	Se	selenium 79	52	<u>e</u>	tellurium 128	84	Ро	molonium —	116	^	livermorium -
	>			7	z	nitrogen 14	15	₾	phosphorus 31	33	As	arsenic 75	51	Sp	antimony 122	83	<u>B</u>	bismuth 209	115	Mc	moscovium -
	≥			9	O	carbon 12	14	S	silicon 28	32	Ge	germanium 73	20	Sn	tin 119	82	Pb	lead 207	114	ŀΙ	flerovium -
	=			5	В	boron 11	13	Ρl	aluminium 27	31	Ga	gallium 70	49	I	indium 115	81	11	thallium 204	113	R	nihonium –
										30	Zu	zinc 65	48	S	cadmium 112	80	БH	mercury 201	112	Ö	copernicium
										29	Cn	copper 64	47	Ag	silver 108	62	Au	gold 197	111	Rg	roentgenium
Group										28	Ë	nickel 59	46	Pd	palladium 106	78	귙	platinum 195	110	Ds	darmstadtium -
Gro										27	ဝိ	cobalt 59	45	R	rhodium 103	77	ľ	iridium 192	109	¥	meitnerium -
		- 1	hydrogen 1							26	Fe	iron 56	44	Ru	ruthenium 101	9/	Os	osmium 190	108	Hs	hassium -
							_			25	Mn	manganese 55	43	ပ	technetium -	75	Re	rhenium 186	107	В	bohrium -
					pol	ass				24	ပ်	chromium 52	42	Mo	molybdenum 96	74	≯	tungsten 184	106	Sg	seaborgium -
			Key	atomic number	atomic symbo	name relative atomic mass				23	>	vanadium 51	41	qN	niobium 93	73	ц	tantalum 181	105	Op	dubnium –
					ato	rek				22	i=	titanium 48	40	Zr	zirconium 91	72	Ξ	hafnium 178	104	꿆	rutherfordium -
										21	Sc	scandium 45	39	>	yttrium 89	57–71	lanthanoids		89–103	actinoids	
	=			4	Be	beryllium 9	12	Mg	magnesium 24	20	Ca	calcium 40	38	S	strontium 88	26	Ba	barium 137	88	Ra	radium -
	_			က	=	lithium 7	#	Na	sodium 23	19	×	potassium 39	37	Rb	rubidium 85	55	S	caesium 133	87	ŗ	francium -

rı Lu	lutetium 175	103	ت	lawrencium -
02 Yb	ytterbium 173	102	9 N	nobelium
₆₉	thulium 169	101	Md	mendelevium -
68 Er	erbium 167	100	Fm	fermium -
0 Н	holmium 165	66	Es	einsteinium –
® Dy	dysprosium 163	86	ర్	californium -
65 Tb	terbium 159	97	BK	berkelium -
Gd	gadolinium 157	96	Cm	curium
e3 Eu	europium 152	92	Am	americium -
62 Sm	samarium 150	94	Pn	plutonium
Pm	promethium -	93	ď	neptunium -
	neodymium 144	92	\supset	uranium 238
59 Pr	praseodymium 141	91	Ра	protactinium 231
S8 Ce	cerium 140	06	드	thorium 232
57 La	lanthanum 139	68	Ac	actinium

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).